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This paper presents hybrid control of an active suspension system with a full-car model by
using Hw and nonlinear adaptive control methods. The full-car model has seven degrees of
freedom including heaving, pitching and rolling motions. In the active suspension system, the
controller shows good performance: small gains from the road disturbances to the heaving,
pitching and rolling accelerations of the car body. Also the controlled system must be robust to
system parameter variations. As the control method, Hs controller is designed so as to guarantee
the robustness of a closed~loop system in the presence of uncertainties and disturbances. The
system parameter variations are taken into account by multiplicative uncertainty model and the
system robustness is guaranteed by small gain theorem. The active system with He coniroller can
reduce the accelerations of the car body in the heaving, pitching and rolling directions. The
nonlinearity of a hydraulic actuator is handled by nonlinear adaptive control based on the back
~-stepping method. The effectiveness of the controllers is verified through simulation results in
both frequency and time domains.
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Adaptive Control

Nomenclature bs,,» bs, . Front-right and front-left damping
C.G. . Center of gravity coefficients [Ns/m]
a . Distance between the C.G. of car- bs,,, bs,  Rear-right and rear-left damping
body and front axle [m] coefficients [Ns/m]
b . Distance between the C.G. of car-  4s,,, ks, . Rront-right and front-lefi spring stiff-
body and rear axle [m] ness coefficients [N/m]
c . Half of width of car-body [m] ks,,, ks, . Rear-right and rear-left spring stiff-
s . Sprung mass (car-body mass) [kg] ness coefficients [N/m]
Mu,,, M, . Front-right and front-left unsprung A, k¢, - Front-right and front-left tire stiff-
masses [kg] ness coefficients [N/m]
Mu,,, My, . Rear-right and rear-left unsprung kt,, ke,, | Rear-right and rear-left tire stiffness
masses [kg] coefficients [N/m]
* Corresponding Author, Fyr, Fyy . Front-right and front-left active forc-
E-mail : hicupknu@yahoo.com es [N]
TEL : +82-51-620-1606; FAX : +82-51-621-1411 Fyr, Fy:  Rear-right and rear-left active forces
Dept. of Mechanical Eng., College, Pukyong National -
University San 100, Yongdang-Dong, Nam-Gu, Pusan [N]
608-739, Korea. (Manuscript Received January 12, Zs, 2s, . Front-right and front-left displace-

2002; Revised August 26, 2002)

ments of the car-body [m]
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Zs,» 2sy, - Rear-right and rear-left displace-
ments of the car-body [m]

Ru,e 2u, . Front-right and front-left unsprung
masses displacements [m]

Zup 2u, - Rear-right and rear-left unsprung

masses displacements [m]
Zr,. 2r, . Front-right and front-left road dis-
turbances [m]

Zrpm 2r, . Rear-right and rear-left road distur-
bances [m]

2y,,, 2v, . Front-right and front-left servo-va-
lves displacements [m]

Zy,,» 2v,, . Rear-right and rear-left servo-valves
displacements {m]

z . Heaving displacement of the car-bo-
dy [m]

6 . Rolling angle of the car-body [rad]

o . Pitching angle of the car-body [rad]

I . Rolling moment of inertia of the car-
body about the roll axis [kgm?]

I, . Pitching moment of inertia of the car-
body about the pitch axis [kgm?]

Ay, A, . Front and rear piston areas [m?]

Ps,, Ps, Supplied pressures of the fluid of
front and rear pistons [N/m?]

Ca,, Ca, ' Discharge coefficients of front and
rear pistons

Wy, Wy, - Spool valve area gradients of front
and rear pistons

Or, Or . Hydraulic fluid densities of front and

rear pistons
Cim,, Cim, . Total leakage coefficient of the front
and rear pistons [m®/Ns]

Be, Be, . effective bulk moduli of the front and
rear pistons [N/m?]

Vi,, Vi, . total actuator volumes [m?]

T, Tr . time constants [sec]

v, tv, .inputs to front-right and front-left
servo-valves [A]

v,y lv, . inputs to rear-right and rear-left

servo-valves [A]

1. Introduction

Performance of a vehicle suspension system is
typically rated by its ability to provide improved
road handling and improved passenger comfort.

In studies related with an active suspension con-
trol system, quarter or half-car models are usually
used but full-car models are seldom used. The
quarter-car models only deal with vertical mo-
tions and cannot reflect pitch, roll and yaw mo-
tions in practical car systems. Half-car models
(bicycle models) are often considered to perform
good handling capabilities (steering control), but
they do not include roll motion. Hence to solve
this problem, we should consider the full-car mo-
del satisfying all the vehicle motions. The full-
car model consists of a single sprung mass (car-
body) connected to four unsprung masses (front-
right, front-left, rear-right and rear-left wheels)
at each corner. The model has seven degrees of
freedom because the car-body has three degrees of
freedom for heave, pitch and roll motions, and
each unsprung mass has heave motion.

Some researchers (Jung et al., 2000 ; Rark and
Kim, 1998) have been done in controlling pit-
ching and rolling as well as heaving accelerations
of the car-body, but they skip the robustness to
system parameter variations, and do not consider
system including hydraulic actuator. In the paper
of Jung et al.(2000), the full-car model is decen-
tralized by two half-car models by overlapping
decomposition and each half-car model has each
eigenstructure assignment controller, which can
move the closed loop eigenvalues to the desired
positions. Park et al.(1998) proposed a sliding
mode control called decentralized variable struc-
ture control. In the active suspension system, the
controller can give good performance: small
gains from the road disturbances to the heaving,
pitching and rolling accelerations of the car-
body. Also the controlled system must be robus-
tness to the system parameter variations. In this
paper, we applied the Hw control theory to full-
car model because the He controller can satisfy
the above important problems.

In the early studies, the linear model of sus-
pension is used with the assumption of an ideal
force actuator. The most applicable force actua-
tor used in practice is the hydraulic actuator that
has high nonlinear characteristics. Hence to solve
the complicated problem, in recent studies the
dynamics and the nonlinearity of an hydraulic
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actuator (Alleyne et al., 1995 ; Fukao et al., 1999 ;
Lin et al., 1997) are considered. These papers
dealt with the nonlinear dynamics of a hydraulic
actuator in a quarter-car model and used these
dynamics to formulate a nonlinear control laws,
but the control laws were complex. In the hy-
draulic actuator, there are some unknown factors
such as bulk modulus of hydraulic fluid that has
strong effects on actuator dynamics. Hence, the
nonlinear adaptive control is suitable for design-
ing the actuator controller.

In this paper, the system is divided into two
parts : the linear part which is the whole system
except the hydraulic actuator, and the nonlinear
part which is the hydraulic actuator. The linear
part is treated using He control method that
guarantees the robustness of closed-loop system
in the presence of uncertainties and minimizes the
effects of disturbance. The system parameter vari-
ations are taken into account by a multiplicative
uncertainty model and the system robustness is
guaranteed by small gain theorem. The active
system with H. controller can reduces the ac-
celerations of the car body in the heaving, pit-
ching and rolling directions. And the nonlinearity
of a hydraulic actuator is treated by nonlinear
adaptive control based on back-stepping method
(Krstic et al, 1995). The effectiveness of the
proposed controllers is verified through simula-
tion results in both time and frequency domains.

2. System Modeling
2.1 Full-car modeling

2.1.1 Full-car model

The configurations of the full-car model is
described in Fig. 1. The full-car model consists
of a single sprung mass (car body) connected to
four unsprung masses (front-right, front-left, rear-
right and rear-left wheels) at each corner. The
suspensions between the sprung and unsprung
masses are modeled as linear viscous dampers and
spring elements, while the tires are modeled as
simple linear springs without damping.

The model has seven degrees of freedom be-
cause the car body has three degrees of freedom

Fig. 1 Configuration of the full-car model

for heave, pitch and roll motions, and each uns-
prung mass has heave motion.
The following assumptions are made for this
model :
« the vehicle center of gravity is located above
the pitch and roll centers.
e the pitch and roll angles are small.

2.1.2 State space equation
The dynamic equations of motion for four
unsprung masses are given as :

m”/réufrz bs/r (‘ésfr - 2”/7) + ks/r (Zs.rr - z“fr)
+kt,r(zr,r_2u,r) —Fy
M 2, = bsﬂ (Zsfl - zuﬂ) + ksfl (szz - zuﬂ)
+kt,, (Zr,,—Zuﬂ) —Fn
murréurr: bsrr ( Zsrr - Zurr) + ksr,, (Zs,.r - Zurr)
+ ki, (2r,,—2u,,) —Frr

munéu”: bsrt (an - Zu”) + ksrt (Zsrt - zurl)
+ktﬂ (Zrn_zun) —Fy

(1)
(2)
(3)
(4)

The force balance equation for the car-body is

msZ= bs,, (Z”fl - Z.SII) + bSJr (2””_ Zsfr)
+ bsﬂ (2:1,, - 23,,) + bs,,(zu,,—z's,,)
+ ks, (2u,,—25,,) + ks, (20,— 25,) (5)
+ ksﬂ ( Ry ™ Zsrr) + ksr, (Zuﬂ - Z.;,,)
+Fp+Fut+FrtFn

The torque balance equations about the rolling
axis and the pitching axis are given respectively
by
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Lid=—cbs, (2u,—2s,,) +Cbs,(2u,— 25,)
- Cbsrr (zuﬂ_ésﬂ) + Cbsr, <Zu,, - 237,)
_Cksﬁ<2u,,_Zs;r) +C/€s,l(2u,,_zs,l) (6)
— ks, (2uy,— 25,,) + Chs,, (Zup— Zsp)
—cFp+cFan—cFntcFn

LO=—abs, (2u,,—2s,) —abs,(2u,—2s,)
+ bbs,, (Zupy—Z2sy,) T bbsy (20— 2s,,)
— ks, (Zu,,—2s,,) — ks, (Zu,— 2s,) (7
+ bks,,(2u,,— 2s,,) + bks,,(Zup— 2s,,)
‘der—de1+wa+bFrz

We choose the state variables as the following :

X1=Z2
x2=0
x3=(D
X4=2u,, -
X5=Ru,,
X6= Zutyy
X71=—=Ruy,
Xs=2
x9=0
X1o:@
xll:zw;*
X15=2uy, .
X13:2urr:
X14= Zuy, -

: Heaving displacement of the car-body
. Pitching angle of the car-body
. Rolling angle of the car-body

Displacement of front-right unsprung

mass

. Displacement of front-left unsprung

mass
Displacement of rear-right unsprung
mass

. Displacement of rear-left unsprung

mass

. Heaving velocity of the car body
. Pitching angular velocity of the car-

body

. Rolling angular velocity of the car-

body

Velocity of front-right unsprung mass
Velocity of front-left unsprung mass
Velocity of rear-right unsprung mass
Velocity of rear-left unsprung mass

Assume that

W, = Mu,— Muy , bs,rz bsﬂ:bs_, . ksﬁzksﬂ:ks,
My = My, = Mu, ' bs,.r:bsnzbs,. ; ksrrzksﬂ:ksr
kz,,:ktﬂ:kt,.,:ktﬂ=kt

The state
given by

space equation in matrix form can be

K5 (t) =Apxp(£) + Bou () +pd (£) (8)

and the measured output equation can be written

by

where

yp(t) = Cpxp(t) 9)

Zp(t) =[x %2 X3 X4 X5 X6 X7 Xo X0 Xu Xz X1z xul”

u(t)z[Ffr Fy Frr Frl]T:

control input

d(t)=[zr, zr, 2r, 2r,)" . disturbance

An A A Au
Ap= An An Ax Au|, Bp=| Bpa |, Ib=| I3
Ay Asn Az Asu

with

Ar=[0¢x3], A1z=[00x0)
A13:[I(3x3) , 0(4><3)], A14:[0(3x4) , I(4><4)]

[ ks ks ke ks
w0 s Ms Ms s Mms
Au=| 0 aun 0 An= :Cks ks _Cks ck
0 ’ Iz [1 ]I II
a1 2103 —aks, —aks, bks  bks
L Iy Iy Iy Iy J
[ bs, by, b, b |
ass 0 asio s s Mo e
_ _ _Cbs _CEL _Cbsz Cb.sz
Aza 0 ags 0 |, Au Iz I [I I;
s 1010 —abs, —abs bbs bbs
L Iy Iy Iy I,Y -
[ ks _Ck85 ‘dksl-‘
mu! ”'lu‘f mu,
ks, chy, —aks, a 000
My, My My 0 as 0 O
A — £ 5 i , A =
N b ke bk 2710 0 awm 0
My,  Ma,  Ma, 0 0 0 aw
ks C/i?sZ bks[
| Ma, Wiy M, |
7& ‘Cbs, —(lbs[ [ —bsl 0 0 0
mu, my/ mu, muf
by, by, —abs 0 by
_| May My, Py - My
B= , An= /
by, —chy Db o 0 by
My, My, My, M,
by cbs B 0 o0 o b
L My, Wy My, 1 May -
Bpn= [0(7x4):| s
L
L S B Muf
ms mS ms ms ;I 0 0
— — w
Bm= TC IL IC IL A= v
x x x X 0 0 =1 0
—a-a b b Mhar
L L Lk 0 0 0 -l
mu,

Boun| n

B P31 [;!
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_k!_ 0 0
Mur
0 75‘— 0 0
1“1=[0<7x4)], B:[O(am], Ii= v b
0 0 -+ 0
M,
0 0 s
L mu"
and
‘2(ksl+ksr) _Z(Hks,_bksr)
as1= , ds3= »
ms mS
_2(bsj+bs,> _Z(abs,—bbsr)
dgg ™= , dglo™— s
ms ms
_ —2C2(ksf+ksr) - _2C2(bs!+bsr)
Ao2= I , A99= I
2(aks_,_bksr) 2(a2ksj+ bzks,)
ai= y A103= s
I I
2(ab3,—bbsr) —2(azbs,+ bzbsr)
adies= s d1010=
I I
- (ks,+kt) _ - (ks,+kt)
Q= AT
Mu, My
— (ks k) — (ks d R
Q= — Q= — .
mur MU,

2.2 Hydraulic actuator modeling

2.2.1 Hydraulic actuator model and dynamic
equations

It is assumed that the hydraulic actuator con-
sists of a spool valve and a hydraulic cylinder. Ps
and P, are the pressures of the hydraulic fluid
supplied from and returned to the spool valve,
respectively. As the spool valve moves upward
(positive 2»), the upper chamber of the cylinder is
connected to the supply line and its pressure
increases. In the meantime, the lower chamber is

hydraulic cylinder

Fig. 2 Configuration of hydraulic actuator

connected to the return line and its pressure
decreases. The dynamic equation of the hydraulic
actuator is given as (Merritt, 1967):

4122 PL=QL_CthL—A(Zs_Zu) (10)
where Q= Cawzo &jg%(ﬁ’)ﬂ (11)

The relationship between the spool valve dis-
placement z, and the pressure across the load P,
can be expressed

—_ 4B _ABe p (7 _7
PL I/t CthL I/tA(ZS le)

_|_ 4@6 CdWZu Ps'—Sgn Ry PL
Vi V )

or PL=—,8PL—0'A(ZS—Zu)
+yv Ps—sgn(2,) Pr 20

(12)

(13)

where 05%, B=aC\n, YEade,/i
¢ e

By multiplying (13) by A, we can get the rela-
tionship between the spool valve displacement z
and the generated force
F=—B8F—aA*Zs—2Z.)
+y/AVPA—sgn{z,) Fzy

The valve displacement 2, is related to the input

(14)

of servo-valve 7, as follows :

Zy= ("“Zu+l'v) (15)

1
4

We have the following relationships

Zspr—Rupr=Xs— CXs— QX1 X1 (16)
Zsn ™ Zup=2XsF CXo— aXw—X12 (1n
Zsrr— Zurr =Xa— CXo+ bX10—X13 (18)
Zsrr— Zun=2Xs+ CXo+ bX10— X14 (19)

Because the full-car model has x-symmetric axis,
the front-right and front-left hydraulic actua-
tors have the same specifications and rear-right
and rear-left ones also have the same spec-
ifications.

2.2.2 Dynamic equations of four hydraulic
actuators in full-car meodel
Based on (14) and (15), the dynamic equations
of four hydraulic actuators in full-car model! can
be expressed as follows :
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Fir=—BsFr—ay,A} (xs— cxo— axio—xu1)

(20)
+7,V/A7 VP, Ar—sgn(2,,,) Frrzo,,
Zv,r:L(—Zv,,‘i'l.v,r) (21)
153

Ffl: bﬂfFﬂ_a’f,A,zf (xs+ CXo— AX10— X12) (22)
+ vaZf \/Ps,Aj—SgI‘l (Zvﬂ) Ff[Zv,,

. 1 .

Zvﬂzz__f(_zl;ﬂ+luﬂ) (23)
Frr= —BrFrr_afrA?' (xs— Cx9+bX10—X13) (24)
+ Yr \/AT\/PsrAr_Sgn (Zvﬁ) Frer,-,
Z.U,TZZ_L(_ZU”—FZ.I),W) (25)
Frt:—',BrFrl_af,-Aa (X3+ Cx9+bx10_X14) (26)

+ YrVZr \/Ps,.Ar_Sgn (Zvr,) FrlZvﬂ
éu,,=%(—zv,,+l'v,.,) (27)

3. H. Design of the Linear Part

3.1 Preliminaries for H., controller design
The scheme of the proposed controller can be
seen from Fig. 3, where :

G(s) Zp w
E it |
@ N B e N N E
d, 1 t M
3 x| R Z
d, N L —2J
n JJ]U!V r—”/_—i 23
w o R Ry e .
- ! uﬁl W “4 z
n T L4 j
ey PO Laun | Ty, zs
€ 1 | L5 ]
en | Uy | " w Zg
(33 | | |
F, luy 1L T L )
3 [— ?
+
S F/'f
L Enlmydrant
S Bl ry
L\t Foy [Hydrantic ] Fe | KW
.*‘ £ ar'yuuwr rr [~ ]’ =

d
+ F, Hyvdraulic F
A*‘ actuator ri

Fig. 3 The proposed controller

P(s) . Plant (full-car suspension system)
W{(s) : Weighting functions

G(s) . Augmented system

K(s)  Hw controller

"1, M2, N3 . Measurement noises
Let’s define the force errors :

efrZFfr_Ffr ; efl:Ffl_Fl% ;
— d - — d -
err—Frr_Frr ' erl_Fr[_Fr[ ’

where Fyr, Fy, Frr, Fy are actual forces gen-

erated from the front-right, front-left, rear-right

and rear-left hydraulic actuators, respectively.
And F&, Fg, F2 ., F2 are those desired forces

calculated from Ho controller.

The above errors are considered as the distur-
bances for the linear system.

Let us consider that u=[Fy, Fo Frr Fr)T is
defined as the control input for the force
generated at the front-right, front-left, rear-right
and rear-left suspensions respectively, then the
systems (8)-(9) can be rewritten in the form :

x,,=A,,x,,+B,,u+G,,[‘ﬂ (28)

Yp=CpXp (29)
where d:[err Zra Rrrr erl] T, e:[efr €51 Err erl] T

The considered transfer functions of interest are
these from disturbance to the heaving acceleratio-
n, pitching acceleration and rolling acceleration
of the car body.

The state space representation of the plant can
be written in the form :

X’pZApo+Bp1w+Bp2u (30)
2p=Cp1xp+Dpnntw+ Dpra (31)
Vo= Cpaxp+ Dpartt + Pooztt (32)

where )

Bu={Gp Ousxn]. Be=Bp.

Cor=[Cotr+ Corz Cpra s Coua+ Coss + Coss » Cor),
Coo=C,

Dou=[Dpu1  Dpuz : Dpus » Dpa : Dpnis + Dyuss + Dy,
Dy2=[Dpiar + Dorzz + Dirza + Dpras + Dpas + Donzs + Dpizn].
Don=[0sxs Lisxs) Oaxn],

Dezs=[0isxs1].



Hybrid Control of an Active Suspension System with Full- Car Model Using H,, and Nonlinear --- 1619

From Eq. (21), the controlled output 2z, can be
partitioned as follows:

[ xs] [ Cpu] [ Coun] [ Cprai]
X9 Cr1z Conz Coiz
X10 Cp13 Cpua szs
2= w1 | =| Cou|xp+| Cona | w+| Cpraa| 2 (33)
Uz Cois Couss Coizs
Us Crs Crue Couze
L usd L Cpial L Conra L Cprzr}

Assume that the weighting functions Wi, W, W
corresponding to the states Xs, Xs, X1o have
dynamic equations :

Yu,=Auw,+ Buxs (34)
21=Cw,Xw, T Duw,xs (35)
K, = AwyXwy+ BuXo (36)
2= Cu,Xw,+ Duw,Xs (37)
Fwy=AwgXw, T BuyXio (38)
25= CyyXwy+ DuwyX10 (39)

The weights Wy, Wi, Ws, W; corresponding to the
active forces u, 2, #s, us are scalar values Wy=
a, Ws=am, We=as, Ws=ay, respectively.

From Eq. (33), we have:

x8=CPL1XP+DP|nw+DP121u (40)
x9=cplsz+DPnzw+DP|zzu (41)
%10=Cp,xp+Dp,,;w+Dp,, . u (42)

Substituting Eq. (40) into Eqs. (34) and (35), we
obtain :

XleAwlxwl-‘I—Bwl (CP|1XP+Dme+DP121u)
:Bw1 Cp“,'Cp‘l‘Aw,xw,+Bw,mew+Bw1mell

21 =Cw1xW1+Dwx(Ci’nxP+DP\nw+DP1uu)
=Dw1 Cp“xp+ Cwlxwl+leDp“1w+leDp”lu

(43)

(44)

Substituting Eq. (41) into Egs. (36) and (37),
sz=szxwz+sz(CﬂuxP+DPuzw+DPuzu)
:szCPlsz+szxwz+szDPnzw+szDP1nu

= ngxw; +Dwz ( CP|sz+DPnzw +Dﬂuzu)
=Dwz CP:sz+ szxwz +DszPnzw +DW2DPmu

(45)

(46)

Substituting Eq. (42) into Egs. (38) and (39),

st=AuJQle +BW3 ( CmeP+DPx 1w +Dﬂ1zsu)

47
=BwsCPlsxP+Awaxwa+BwsDlesw+BwsDPlzzu ( )

23=Cw3st+Dw3(Cpmxp‘i"Dp“sw +Dp1“u)

48
=Dwacﬂlaxﬁ+ Cwast+DwsDﬁl|sw+DwsDPmu ( )

From Eq. (33), we have

{ ul=CP14xP+DP1uw+DP1uu (49)
Z=mu
{ uz=Cp,5xp+Dp,,sw+Dp,,5u (50)
=2 U2
{ Us=Cp,Xp+ Dp,,,w+Dp,, ut (51)
B=q3Us3
{ u4:CP11xP+DP117w+DP121u (52)
7= QaUs
From Egs. (30), (43), (45) and (47)
Xp Ap O14x3) [ x»
xwl — Bw1Cp“ 1411)1 0 0 Xw,
xwz szCpu 0 sz 0 Xw,
Kw, BwaCan 0 0 Aws j—x“’a (53)
BP1 sz
waDPln BwlDﬂlzl
+ w+ u
szDPnz szDPuz
BwaDPns BwsDPlza~

From Egs. (44), (46}, (48), (49), (50), (51) and
(52)

(2] [Dw,Cp, Cuo, 0 0]
22 Dy,Cp, 0 Cu, O
z| | DuCoy 0 0 Cul|™
zj=| aaCp, 0 0 O Yoy
2 @Cp, O 0 0 ||*™
2 ®Cp, 0 0 O Hus
L <7 L d4Cp,., 0 0 0 (54)
[ Du,Dp,,,] [ DinDpy,, ]
Dy,Dp,,, Dy,Dy,,,
Dy, Dp, Dy,Ds,,,
+ alepm + a'lel“ U
asz“s dszus
asDp, a3Dp,,,
L 04Dp“., i L (I4Dpl2., J
Eq. (32) can be rewritten as follows :
Xp d
y=[Cp, Oxs)] T + [0 Loxa Oen]| 1| +[0sxd]u (55)
o e
Xy

Rearranging Eqs. (53)-(55) yields:
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x=Ax+Biw+Bu (56)
Z=C1X+D11w+Dlzu (57)
y=Cox+Daw+ Dxu (58)

where x=[x, Xw, Xw, XwJ 7
z2=a 2 5 2 2 2 z]7,

y= [xs X9 xlO] T

A Onaxs B, S
A= Bu,Co, A, 0 0 Bi= Bu.Dy,,, B= Bu Dy, .
Bo,Cp, 0 Au, 0 Bu,Dy,,, Bu.Dy,,,
BuCoy 0 0 Ay Bu,Dp,, | Bu,Dp,y, ]
[Die,Cop, Ce, 0 0] {leme- [ Du, Dy,
Du,Co, 0 Cu, 0 Du,Dy,,, DDy,
DuCoy 0 0 Cu Du D, Du Dy,
C=| alp, 0 0 0 | Du=| aDy,, |. D= aDyp,, |.
(tsz,s 0 0 0 lIszm a'szm
aCp, 0 0 0 @Dy, Dy,
LaCp, © 0 0 L&Dy, | .

C:=[Cs, Ouxan]. Dn=[0cxs Laxy Ouxa]. Dr=[0axs].

The augmented system G (s) is fitted to the stan-
dard form of the H. control problem. Now we
will use H. theory to find a controller K(s)
satisfying the above stated control objectives.

3.2 H. formulation and solution

The He control problem is to find a controller
K (s) for the augmented system G (s) such that
the co-norm of the closed loop transfer function
T:w is below a given positive scalar y (Doyle et
al., 1989):

Find K(s) || Tew o<y (59)

For the problem to have a solution, the following
conditions must be satisfied (Doyle et al., 1989):

i. (A, By is stabilizable, and (Cs;, A) is
detectable
ii . Dz is full column rank, and Ds; is full row

rank

111, has full column rank for
|: Cl DlZ
all w

. A—jwl Bx:|

. has full row rank for all
[ C: Dy
w

V. D11=0 and ng=0

The Hw. solution involves two Hamilton matrices

A BBl —BBf
H""_[—c{cl —AT }
AT yECTG-CIG
and ]"’_[—BlB{ iy }

There exists an admissible controller such that
| 7w |l«<y iff the following three conditions
hold (Doyle et al., 1989):

l. He&dom(Ric) and X.. ! =Ric(H.) =0

2. JoEdom(Ric) and Yo ! =Ric(J.) =0

3 p( X Yo} <y (0(A)
A=largest eigenvalues of A)

- spectral radius of

When these conditions hold. one such controller
is

~

P

A BK} (60)

K(S):|:CK D

where

Ae=A+y BBl Xt BiFoot ZuLoCs
Fo=—B!X.

Lao=—Y.C}

Zo=(I— 7Y Xu)

3.3 Uncertainty description and choosing
weighting functions
The change of parameters is assumed as

follows :

1. the change of sprung mass {(car body mass)
includes passengers and luggage weights:
AmS

2. when the damping coefficients are measured,
these errors are about +10% of the given
values.

Assume that Ans=3500 kg, Ay, = £10%bss and
Abs;: i lO%bsr.

From the small gain theorem, the robustness of
the closed-loop system in the presence of uncer-
tainties is assured if y<l. The change in the
parameters of the system is taken into account by
multiplicative uncertainty model and the uncer-
tainty A(s) is derived from the nominal plant
P, (s) and the perturbed plant Py(s) as follows
(Shahian and Hassul, 1993):
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Fig. 4 Multiplicative uncertainty at the plant output

_Pp(s) —Puls)

AW=""01 ey

The weighting functions are chosen so as to satis-
fy

[AGo) |<| W(w) . Yo (62)

Our problem can be solved if y satisfying the
conditions in section 3.2 with the weighting
functions are chosen so as to satisfy condition
(62) and y<1.

4. Adaptive Nonlinear Design of the
Actuator Part

4.1 Preliminaries for adaptive nonlinear
controller design

We consider the hydraulic actuator dynamic
Eqgs. (20) and (21). Two parameters are con-
sidered as unknown parameters: ay,=48.,/V,,
and 1/zy. The main reason for choosing ay, as an
unknown factor is that the bulk modulus of
hydraulic fluid is known to change dramatically
even when there is a small leakage between a
piston and a cylinder. The next parameter is the
time constant and is known to affect the control
performance greatly.
Equations (20) and (21) can be written in the form

Ffr: ) [alFfr+dz (X3_ CX9— axlo—xu)
+asv Ps,A;—sgn(zy,,) Frras,,]

2"0,,=@(—2u,,,+2'fr) (64)

(63)

where &, & are unknown parameters

a1=—C¢m,, az= -As‘, aa=cd,a)/,v Af/pf

Our purpose is to design a controller such that
Fyr can track its desired value F# by using
adaptive non-linear control based on the back-
stepping method (Krstic et al.,, 1995)

4.2 Adaptive nonlinear control via back-
stepping method .
The back-stepping method can be stated as
follows :

[1] The 1st step:
Consider Eq. (64) with virtual control z,, and

rewrite it in the form :

Fr=6p1+asVPs,A;—sgn(zs,,) Frr20,] (65)
where gi=aiais+ @2 (Xs— CXo— axw—xu) (66)
We define the first error variable

e=F,—F} (ei=es) (67)

Its first derivative is obtained

e=be+ ﬂlaav"Ps,Af—sgn (Zu”) Fq 2y, F?r (68)

Let 6 be estimated by & If the virtual z,,,
control is chosen to satisfy 62,,= 611, where

“Cflel_gﬂpl'{"F}r

=3 (69)
O1asv Ps,A;—sgn(zy,,) Fyr
then Eq. (68) becomes
éfr:—Cflel+0~1¢l (70)

where §=0,— 0, is the error of parameter esti-
mation.
Next we choose the Lyapunov function as

|

m=?6f+

|
27/1

>0 (71)

-~ A

(91(01—7?,(01@1) (72)

then Vi=—csef— yl

V<0 when we eliminate §, with the update law:
él_ rnpe (73)
where 77, >0 is the adaptation gain.
(2] The 2nd step:
We define the second error variable
=2y, — (74)
Its first derivative can be given as

e'2=—(922v,,+ 62if7_d1 (75)

The Lyapunov function is chosen as
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1

2

Vit b+ 185>0 (76)

The first derivative of V is

. 1 =, 4
V2=—sz€22‘—77192( 2+7f2(€z+a1) 62) (77)
The control law is and update law for B, are
given as follows :
—cnetOalest ) +an
lrr— 9
2

52:_7f2(92+a1) €2 (79)

(78)

where y,, >0 is the adaptation gain.

Similarly, we apply the above procedure to the
pairs of Egs. (22)-(23), (24)-(25), and (26)-
(7.

5. Simulation Results

The numerical values used in this simulation
are referred to the work of Park and Kim (1998)
and Alleyne and Hedrick (1995), and are given in
Table 1 and Table 2.

The weighting functions and the value of y are

chosen as

155401 . L, 185401 . _ 22s+0.1 .
W“453+150' Wz_1595+1350‘ W3_67s+185'
Wi=35%10"%; Wi=35x10"%;  Wi=43x107%,;
Wr=43X10"%; 7=0.9986

The gains of adaptive controllers are chosen as

vr=7f,=10%; c;=6500. c;,=10;
Yr =7, =10, ¢;,=7000; c,,=S5

The input disturbances at the rear wheels z,,, and
2y, (t) are relatively identical to the input dis-
turbances at the front wheels z,,,(¢) and z,,(¢),
except for a time delay.

2, (8) =As, sin(wt) ; 2z, (8) =Amsin[w(t+0)] ]
2, (1) =Aysin(wt) | z,(t)=A;sin[o(t+1)].
where

@ . disturbance frequency.

Asr. Asi, Arr, Ap ' disturbances amplitudes at

the front-right, front-left, rear-right and rear-
left wheels respectively.

r [ time delay, r= ath with is the car’s velo-

Table 1 Numerical values of full-car model for city.
simulation
.1 Fr ncy domain
Parameters Values | Units S equency m.al ) o
1460 " The plots of uncertainties and weighting func-

Sprung mass s & tions are given in Figs. 5, 6 and 7. Figs. 8-10
front unsprung mass my| 40 ke show the gain plots of the transfer functions from
rear unsprung mass mr| 355 kg disturbance to the heaving, pitching and rolling
front damping coefficient bs,| 1290 |N-s/m accelerations of the car-body in three cases : pas-
rear damping coefficient ks,| 1620 | N-s/m
front spring coefficient ks, | 19960 N/m Table 2 Numerical values of hydraulic actuators for
rear spring coefficient ks, | 17500 N/m simulation
tire stiffness coefficient k. | 175500 | N/m Parameters Values Units
rolling moment of inertia of I 460 | Keem? s, 4.515el3 N/m®
the car-body x & B 1.00

itchi inerti 1.545¢9 N/ (m*?kg!?
pitching moment of inertia L | 2460 | kgem? vr 13 / (m*2kg'’?)
of the car-body A, 3.35e-4 m?
distance between the center P, C 10342500 N/m?

. !

of gravity of car-body and a 1.011 m 2. S 145¢13 N/m®
front axle

; Br 1.00
distance between the center P
of gravity of car-body and & | 1.803 m rr 1.835¢9 N/(m**kg"?)
rear axle \ A 2.85¢-4 m?
half of width of car-body c | 0.755 m Ps, 9545000 N/m?
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100 b N jw) f‘”-%r
-120 /
-150 4 "
10" 10° 10! 10?
Frequency (Hz)
Fig. 5 Plots of uncertainties and weighting
function W,
0 T -
T Ay M/(e)) /ur A, ALje) for
— -50
3
3 |
-100 ps v
// /\(/(J)}f)r’\b
-150
10" 108 10' 10¢
Frequency (Hz)
Fig. 7 Plots of uncertainties and weighting function
W3
40 =a
30 -
~
K -
£ #
/
5 e . - pussive svstem
/
0 — - - aclive system with desired input
Ry = & o « » active system with actual input
-20
10 10° 10! 102

Frequency (Hz)
Fig. 9 Gain plot of pitching acceleration of the
car-body

sive system, active system with desired input and
active system with actual input.

A human is very sensitive to the vertical vi-
brations that occur over the frequency range of
1-2 Hz, to the pitch vibrations over the range of
1.3-2.5 Hz, and to the roll vibrations over the
range of 1.5-2 Hz, and less sensitive to the fre-

quencies outside these ranges (Gillespie. 1992).

=~
.g -
£
53
REE
Frequency (Hz)
Fig. 6 Plots of uncertainties and weighting
function W,
50
40 L
30} = A 1
§20r oo %
ES P
'3 10 passive system
of ' — active system with desired input
otk - - - active system with actual input
.20 L L
10! 10° 10 104
Frequency (I1z)
Fig. 8 Gain plot of heaving acceleration of the
car-body
25
30 | 1
3
£
G passive system
active system with x; input
55 F » %« % % gclivesystemwith x, input
.60 I .
10" 10° 10 102
Frequency (Hz)

Fig. 10 Gain plot of rolling acceleration of the
car-body

In Fig. 8, although the heaving acceleration is
somewhat higher in the active case than in the
passive case below 0.5 Hz, but the active suspen-
sion improves at 0.5-2 Hz. which is the sensitive
frequency region of a human in heaving vibra-
tion. Also, we can see in Fig. 9 and Fig. 10, the
active system greatly improves the pitching and
rolling accelerations at the sensitive frequency
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regions of a human.

The above figures show that adaptive nonlinear
control could cape with the nonlinearity of the hy-
draulic actuator, and the frequency properties set
by H. design are kept well.

5.2 Time domain
The responses of the system with step disturb-

5 . T T T T T
D o4l
3 i . i
2 i .- passive system
N 3 . :s
:§_ Y active system with desired input
§ o2fi .. 1 ¢ ith actual i E
3 ~ -+« % active system with actual input
3 !
3 o1
3 :
o
£ 0 Ly
5 s
oo

-2 i 1 . : L i J

0 0.2 04 06 08 1.0 1.2 14 16

Time (s}
Fig. 11 Heaving acceleration of the car-body with
step disturbance

- passive system
active system with desired input

----- active system with actual input

Rolling acceleration (rad/s?)

6 02 04 08 08 10 12 14 18
Time (s}
Fig. 13 Rolling acceleration of the car-body with
step disturbance

- " T
passive system .- dctive system with desired input

Pitching acceleration (rad/s?)

.- active sysler)i with actual input

] oS 1 15 2 25 3 35 4
Time (5)

Fig. 15 Pitching acceleration of the car-body with
sine wave disturbance

Trong Hieu Bui, Jin Ho Suh, Sang Bong Kim ond Tan Tien Nguyen

ance are shown in Figs. 11-13. Figures 14-16
show the respounses of the system with sine wave
disturbance.

We can see that the active system has good
performances. The heaving, pitching and rolling
accelerations of the car body are reduced. The
designed nonlinear adaptive controller can keep
good performance of the He controller.

e v ot T R b o ke
passive system
- active system with desired input

=+ 4~ - gctive xystem with actual input

Pitching acceleration (rad/s?)

L s J

L
0 0.2 0.4 08 08 1.0 1.2 14 16

Time (s)
Fig. 12 Pitching acceleration of the car-body with

step disturbance

Heaving acceleration (m/s%)

i ER a.-ctive system with actual input
0 0.5 1 15 2 25 3 35 4
Time (s)
Fig. 14 Heaving acceleration of the car-body with

sine wave disturbance

passive system  — active system with desired input
2l ! " - . . -

Rolling acceleration (rad/s’)

-2 L L Ly y
- -« active system with actual input

0 05 1 15 2 25 3 35 4
Time (s)

Fig. 16 Rolling acceleration of the car-body with
sine wave disturbance
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28 I 1 L i L 1 I
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(x107 N/m?)

Estimation error

Fig. 17 Estimation error §,

Figures 17 and 18 show the estimation errors 6,
and &, respectively. The errors between estimated
values and actual values are very small.

6. Conclusions

This paper presents hybrid control of an active
suspension system with full-car model by using
H.. and nonlinear adaptive control methods. He
controller achieved robustness in the presence of
parameter uncertainties and minimized the effects
of disturbance. The system parameter variations
are taken into account by multiplicative uncer-
tainty model and system robustness is guaranteed
by small gain theorem. Simulation results show
that the proposed controller yields better per-
formance in the heaving, pitching and rolling
accelerations of the car-body than the passive
system in both time and frequency domains. And
the designed nonlinear adaptive controller for
hydraulic actuators can keep good performance of
the Ho controller.

From the above results, the H. controller can
be used usefully to control an active suspension
systern because it meets two requirements :

{1) good performance: small gains from road
disturbance to the heaving, pitching and rolling
accelerations of the car-body.

(2) robustness property which is guaranteed
from small gain theorem.

It is expected that the active suspension system
with the proposed controller can be applied to
car industry so that the car’s quality could be
improved.

1625
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Fig. 18 Estimation error &,
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