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Hybrid Control of an Active Suspension System with Full-Car 
Model Using Hoo and Nonlinear Adaptive Control Methods 
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This paper presents hybrid control of an active suspension system with a full-car model by 

using H~ and nonlinear adaptive control methods. The full-car model has seven degrees of 

freedom including heaving, pitching and rolling motions. In the active suspension system, the 

controller shows good performance: small gains from the road disturbances to the heaving, 

pitching and rolling accelerations of  the car body. Also the controlled system must be robust to 

system parameter variations. As the control method, H,~ controller is designed so as to guarantee 

the robustness of  a c losed- loop system in the presence of  uncertainties and disturbances. The 

system parameter variations are taken into account by multiplicative uncertainty model and the 

system robustness is guaranteed by small gain theorem. The active system with H= controller can 

reduce the accelerations of the car body in the heaving, pitching and rolling directions. The 

nonlinearity of  a hydraulic actuator is handled by nonlinear adaptive control based on the back 

-stepping method. The effectiveness of the controllers is verified through simulation results in 
both frequency and time domains. 

Key Words : Active Suspension, Fu l l -Car  Model, Hydraulic Actuator, H~ Control Nonlinear 
Adaptive Control 

Nomenclature 
C.G. : Center of  gravity 

a :Dis tance  between the C.G. of car-  

body and front axle [-m] 

b :Dis tance  between the C.G. of car-  

body and rear axle I-m] 

c : Half  of width of car -body  [m] 

ms : Sprung mass (car-body mass) [-kg] 

muir, rnus,: Front- r ight  and front-left unsprung 

masses [-kg] 

mu,.,, mu,.,: Rear-r ight  and rear-left unsprung 
masses [-kg] 
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bssr, bsst 

bs~, b~T, 

k .... ks,, 

ks~, ksr, 

k t , ,  k,,, 

ktrr, ktr~ 

Fir, Fzl 

FrT, Fr~ 

Zsjr, Zsj~ 

: F r o n t - r i g h t  and front-left damping 

coefficients [-Ns/m] 

Rear-r ight  and rear-left damping 

coefficients ~Ns/m] 

Rront-r ight  and front-left spring stiff- 

ness coefficients I-N/m] 

Z Rear-r ight  and rear-left spring stiff- 
ness coefficients [-N/m] 

: Front-r ight  and front-left tire stiff- 

ness coefficients IN /m]  

: Rear-right  and rear-left tire stiffness 
coefficients [-N/m] 

Front-r ight  and front-left active forc- 
es [-Y3 
Rear-r ight  and rear-left active forces 
EN] 

: Front-r ight  and front-left displace- 
ments of the car-body [m] 
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"~Srr, '~sr/ 

~Usr, ZUlt 

Zu,~. Zur~ 

~rlr, Zr/l 

Zrrr, ~rrt 

~Ojr~ ~Vy l 

~Vrr, ZVrt 

z 

0 

Ix 

Iy 

A/, A~ 
P~,, P~r 

C~,, Cd~ 

Wf/,  Wfr 

P/, P~ 

: Rear-right and rear-left displace- 

ments of the car-body Em] 

Front-right and front-left unsprung 

masses displacements [m] 

Rear-right and rear-left unsprung 

masses displacements [m] 

Front-right and front-left road dis- 

turbances [m] 

: Rear-right and rear-left road distur- 

bances [m] 

: Front-right and front-left servo-va- 

lves displacements [m] 

: Rear-right and rear-left servo-valves 

displacements [mj 

: Heaving displacement of the car-bo- 

dy [m] 

Rolling angle of the car-body ~rad] 

: Pitching angle of the car-body [rad] 

: Rolling moment of inertia of the car- 

body about the roll axis Ikgm 2] 

Pitching moment of inertia of the car- 

body about the pitch axis Ekgm 2] 

Front and rear piston areas Em 23 

Supplied pressures of the fluid of 

front and rear pistons EN/m 23 

:Discharge coefficients of front and 

rear pistons 

;Spool  valve area gradients of front 

and rear pistons 

: Hydraulic fluid densities of front and 

rear pistons 

Ctm. Ctmr : Total leakage coefficient of the front 

and rear pistons ~mS/Ns] 

/5'e~, tier : effective bulk moduli of the front and 
rear pistons ~N/m 2] 

V~, Vtr ; total actuator volumes [m 3] 

r/, rr : time constants Isec] 

iwr, iw, ; inputs  to front-right and front-left 

servo-valves [A] 

iv,~, ivr, : inputs  to rear-right and rear-left 

servo-valves [A] 

I. Introduction 

Performance of a vehicle suspension system is 

typically rated by its ability to provide improved 

road handling and improved passenger comfort. 

In studies related with an active suspension con- 

trol system, quarter or half-car models are usually 

used but full-car models are seldom used. The 

quarter-car models only deal with vertical mo- 

tions and cannot reflect pitch, roll and yaw mo- 

tions in practical car systems. Half-car models 

(bicycle models) are often considered to perform 

good handling capabilities (steering control), but 

they do not include roll motion. Hence to solve 

this problem, we should consider the full-car mo- 

del satisfying all the vehicle motions. The full- 

car model consists of a single sprung mass (car- 

body) connected to four unsprung masses (front- 

right, front-left, rear-right and rear-left wheels) 

at each corner. The model has seven degrees of 

freedom because the car-body has three degrees of 

freedom tbr heave, pitch and roll motions, and 

each unsprung mass has heave motion. 

Some researchers (Jung et al., 2000; Rark and 

Kim, 1998) have been done in controlling pit- 

ching and rolling as well as heaving accelerations 

of the car-body, but they skip the robustness to 

system parameter variations, and do not consider 

system including hydraulic actuator. In the paper 

of Jung et al. (2000), the full-car model is decen- 

tralized by two half-car models by overlapping 

decomposition and each half-car model has each 

eigenstructure assignment controller, which can 

move the closed loop eigenvalues to the desired 

positions. Park et a1.(1998) proposed a sliding 

mode control called decentralized variable struc- 

ture control. In the active suspension system, the 

controller can give good performance: small 

gains from the road disturbances to the heaving, 

pitching and rolling accelerations of the car- 

body. Also the controlled system must be robus- 

tness to the system parameter variations. In this 

paper, we applied the H~ control theory to full- 

car model because the Hoo controller can satisfy 

the above important problems. 

In the early studies, the linear model of sus- 

pension is used with the assumption of an ideal 

force actuator. The most applicable force actua- 

tor used in practice is the hydraulic actuator that 

has high nonlinear characteristics. Hence to solve 

the complicated problem, in recent studies the 

dynamics and the nonlinearity of an hydraulic 
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actuator (Alleyne et al., 1995 ; Fukao et al., 1999 ; 

Lin et al., 1997) are considered. These papers 

dealt with the nonlinear dynamics of a hydraulic 

actuator in a quarter-car model and used these 

dynamics to formulate a nonlinear control laws, 

but the control laws were complex. In the hy- 

draulic actuator, there are some unknown factors 

such as bulk modulus of hydraulic fluid that has 

strong effects on actuator dynamics. Hence, the 

nonlinear adaptive control is suitable for design- 

ing the actuator controller. 

In this paper, the system is divided into two 

parts: the linear part which is the whole system 

except the hydraulic actuator, and the nonlinear 

part which is the hydraulic actuator. The linear 

part is treated using H~ control method that 

guarantees the robustness of  closed-loop system 

in the presence of uncertainties and minimizes the 

effects of disturbance. The system parameter vari- 

ations are taken into account by a multiplicative 

uncertainty model and the system robustness is 

guaranteed by small gain theorem. The active 

system with H~ controller can reduces the ac- 

celerations of the car body in the heaving, pit- 

ching and rolling directions. And the nonlinearity 

of a hydraulic actuator is treated by nonlinear 

adaptive control based on back-stepping method 

(Krstic et al., 1995). The effectiveness of the 

proposed controllers is verified through simula- 

tion results in both time and frequency domains. 

2. System Modeling 

2.1 Full-car modeling 

2.1.1 Full-car model 

The configurations of the full-car model is 

described in Fig. 1. The full-car model consists 

of a single sprung mass (car body) connected to 

four unsprung masses (front-right, front-left, rear- 

right and rear-left wheels) at each corner. The 

suspensions between the sprung and unsprung 

masses are modeled as linear viscous dampers and 

spring elements, while the tires are modeled as 

simple linear springs without damping. 

The model has seven degrees of  freedom be- 

cause the car body has three degrees of  freedom 

Zrf ," I ktf  " 
" -  kt~ t 

b~: k/:Ffl zr" 
s: z mua un 

: krt~ z , :  

Fig. 1 Configuration of the full car model 

for heave, pitch and roll motions, and each uns- 

prung mass has heave motion. 

The following assumptions are made for this 

model : 

• the vehicle center of gravity is located above 

the pitch and roll centers. 

• the pitch and roll angles are small. 

2.1.2 State space equation 

The dynamic equations of motion for four 

unsprung masses are given as : 

musrZ.Us~-bsj~(2ss~-Z,u~) +ksjr(ZSsr-ZU:~) (1) 
+ k,  ,~ ( z~ : ~ -  z~,~) - Ff~ 

m~ , ,~ , ,=b , : , (2s : , -2u : , )  +ks : , ( z~ : , - z~ , )  (2) 
+kta(Zr , , -Zu j t )  - E f t  

m ~ , . ~ , ~ = b s ~ ( 2 , , . - 2 ~ , . )  + k s , . ( z s ~ - z u ~ )  (3) 
+ ktr~ ( Zrr,.-  Zu...) - Fr~ 

mur'2U~'=bs~'(2s~'-2u~') +ksrz(ZSrt-ZUrt) (4) 
+ kt., (Z~r,-- Z~r,) -- Frt 

The force balance equation for the car-body is 

m~=bs,,(2~,: ,-2s, ,)  +&:r(2U,---2~:r) 
+bs,.,(2Ur~-2~,-,) +bs~(2u~.-2Srr) 
+ ks:r (Z~:r-- Zs:r) + &,, (Zu~-- Z~:,) 
+ &,,. ( Z~,,.,.-- Z~)  + ks,.~ (z~,,., - z~,.~) 
+F:,.+F:a+Fr,-+Fr~ 

(s) 

The torque balance equations about the rolling 

axis and the pitching axis are given respectively 

by 
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l x O  = - c b ~ , ~  ( ~U,r - -  ZSyr) q- cbs l t  (~uyt - z~sf,) 

-cks±.(gu.~-gS.r)  +cks. , (Zu. , -Zs. , )  (6) 

-cks~(Zurr-Zsrr)  +cksr,(ZUr,-ZSr,) 

- cFsr + cFsz- cF,.r + cFr, 

Iy~)= - abs.~ ( 2u.~- 2S.r) - ab.., ( 2~ . , -  2s~,) 

+ bbs.r ( 2 , ~ -  2,~r) + bbsr, (2Urt - -  Z'$r,) 

-ak . .~ ( zu . . -Zs .~ )  -ak~ . , ( z~ . , -Zs . , )  (7) 

+ bks,~(Z~r-Z~,~) + bks~, (Z~r,-- Z~,) 
-- a F e r -  aFel + bFrr + bF~z 

We choose the state variables as the following: 

x x = z  : Heaving displacement of the car-body 
x2= 0 : Pitching angle of the car-body 
Xs=O : Rolling angle of the car-body 
X4=ZU.r : Displacement of front-right unsprung 

mass 
xs=zu . ,  :Displacement of front-left unsprung 

mass 
X6=ZUr~ : Displacement of rear-right unsprung 

mass 
xr=zu~, : Displacement of rear-left unsprung 

mass 
x s = 2  : Heaving velocity of the car body 
x g = 0  :Pitching angular velocity of the car- 

body 
x~0=# Rolling angular velocity of the car- 

body 
xn=2u~  : Velocity of front-right unsprung mass 
xa2=2w, : Velocity of front-left unsprung mass 
Xas=2Ur,.: Velocity of rear-right unsprung mass 
x ~ = 2 u , ,  : Velocity of  rear-left unsprung mass 

Assume that 

m~.~ = rn~., = m . .  ; bs.~ = b~.,= bs. ; ks/r = ks~,:  k~. 

m ~ r =  rn~,= m ~  ; bs,~= b~,= b~ ; k~r = ks~,= k.~ 

kt,~ = kt±~ = kt,~ = ktr~ = kt 

The state space equation in matrix form can be 

given by 

x , ( t )  =A~c~( t )  + B ~ u ( t )  + F , d ( t )  (8) 

and the measured output equation can be written 

by 

y , ( t )  = C ~ x ~ ( t )  (9) 

where 

X p ( t ) = [ X l  X2 23 X4 X5 X6 X7 X0 Xl0 Xll X12 X13 X14] T 

u ( t ) = [ f  sr Nil  F , .  f r l ] r  " control input 

d ( t )  = [Zrj,  r Zr;,, Zrrr  Zrrt]  r ' disturbance 

L A3~ ~ 2  A~ A34] Bp3~] L ~ ]  

with 

A I =  [0(,×~)3, AI~= [0(~×,)] 
A ~ =  [/(~×~) ' 0(,×~)], A14--[-0(3x4) " I(a×a)] 

,Jail go20 ms m, 
Az~=l o o , Az~ = - c k ~  cks~ 

L L 
[ a~o~ 0 a~o3 - aks~ - aks~ 

L L 

ms ms 
a88 0 ast0 

gz3= 0 a~ 0 /' g~=/-cb'Ix cbs,ix 

[a108 0 al010j I-abs~ -abs~ 
[ I, I, 

ks t -- cksj 
mu~ muf 

ks, cks~ 

Asl= mus mu~ 
ksr -cksr  
mur tour 

ks~ cksr 
~lur tour 

-- tzks~ - 

- aks~ 
mu!  

bks~ 
mur 

bks~ 
mur 

A33 = 

b~ - cbs, - abs, 
muj mul mul 

cb,, -ab,j 
m~ 1 mul m~ 

tour mur tour 

tour tour tour 

A~= 

Bp,,=[0(~×,)], 

[i ms ms ms s 

C --C 

/ 
LL-, -I, Z, I,J 

A~= 

ms ms I 
-cksr cksr 

bksr bksr 
1, I , J  

ms ms I 
-cbsr cbsr 

bb~ bb.~ 
I, I , J  

A32=[ i al~ 0 ' 0 alu 

0 0 Ctt47 

h 
vsl 0 0 0 

mu 
f L 

0 -Vs,, 0 0 
mu 

! 1.. 
0 0 --Vsr 0 

tour 

0 0 0 - b~r 
tour 

-~  o o o 
muf 

-1 
0 0 0 

muy 
- I  

0 0 - -  0 
tour 

0 0 0 - l  
tour 
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kt 0 0 0 
m~ 

0 kt 0 0 
m u f  

0 0 kt 0 
tour  

0 0 0 kt 
tour  

0 ' 1 1 4 - -  

a 1 3 6 - -  

and 

-2(k~,+ksr)  2(aks , -bksr)  
a 8 1 - -  , a 8 3 - -  , 

m s  m s  

-2 (b~ ,+  b ~ r )  -2(ab~, -bb ,~)  
a88 , 6~810 ~ , 

~ s  m s  

-2c2(ks,+ksr)  -2c2(b~,+&~) 
a92 L , a ~ , =  I~ 

2(ak~ , -bk~)  2(a2k,,+b2k~r) 
axol = fy , a l0a -  Iy ' 

2 (abe , -  bbsr) - 2  (az&,  + b2b,~) 
a~os-- Iy " a~°~°-- Iy 

- ( k , , + k t )  - ( k , , + k , )  
, ~ 1 2 5 - -  

m~,  mu 
- ( k , ~ + k , )  - ( k , , ~ t k , )  

, a147-- 
toUr mur 

2.2 Hydraulic actuator modeling 

2.2.1 Hydraulic actuator model and dynamic 
equations 

It is assumed that the hydraulic actuator con- 

sists of a spool valve and a hydraulic cylinder. Ps 
and Pr  are the pressures of the hydraulic fluid 

supplied from and returned to the spool valve, 

respectively. As the spool valve moves upward 

(positive zv), the upper chamber of the cylinder is 

connected to the supply line and its pressure 

increases. In the meantime, the lower chamber is 

Fig. 2 

ms ¢ Zv 

P~ 

P~ 
F 

II ,pool valve 
l 

m u 

h y d r a u l i c  c y l i n d e r  

Configuration of hydraulic actuator 

connected to the return line and its pressure 

decreases. The dynamic equation of the hydraulic 

actuator is given as (Merritt, 1967): 

V,  • 
~ - ~ e P t = Q L - C , , , P L - A ( 2 s - 2 u )  (10) 

where QL=Cawzv/Ps-Sgp(ZV)PL (11) 

The relationship between the spool valve dis- 

placement zv and the pressure across the load PL 
can be expressed 

PL=--  I1, Ct~PL---v~, A (Z* -Z~)  
(12) 

+ 4ffee cawz~, / Ps--sgn (zv) PL 
v, v 7 

o r  PL = - f l P L - a A  (2=-2~)  
(13) 

+ 7. /Ps-sgn (zv) PL Zv 

wherea--4-~vet,,8=-aCtm, 7 - - o t C d w v ~  ~ 

By multiplying (13) by A,  we can get the rela- 

tionship between the spool valve displacement zv 

and the generated force F 

F =  - f l F -  aA2 ( 2 ~ - 2 ~ )  
(14) 

+ 7 , /~ , /P~A - s g n  (zv) Fzv 

The valve displacement zv is related to the input 

of servo-valve iv as follows : 

z v = l ( - - z ~ +  i~) (15) 

We have the following relationships 

Z S ] r  - -  2 Ulr = X 8  - -  C X 9  - -  • X I 0  - -  X l  1 16) 

~s,,-- 2u/,=xs + cxg-- axlo-- x12 17) 

2s,~-- ~u~= xs - cxs + bxlo- Xla 18) 

Zs~--- 2ur,:Xs+ CXg+ bXlo--Xl4 19) 

Because the full-car model has x-symmetric  axis, 

the front-right and front-left hydraulic actua- 

tors have the same specifications and rear-right 

and rear-left ones also have the same spec- 
ifications. 

2.2.2 Dynamic equations of four hydraulic 
actuators in full-car model 

Based on (14) and (15), the dynamic equations 

of four hydraulic actuators in full-car model can 
be expressed as follows : 
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~'sr = -- flj.F/r - aj~A} (Xs -  c x g -  a x l o -  xl 1) 
(20) 

+ )' / f2~/JP~,Ae- sgn (zv,~) Fsrzo~ 

1 
~,Vyr= ~f  ( -- ZVyr-]- tV,r) (21) 

P ~,= - 3 ~ F ~ -  a~,A} (Xs + c x . -  a x . o -  X~) 
(22) 

+ r ~ f A i ~ / P s , A ~ - s g n  (z,,,,) F~tz~, 

2 ~ , , = + (  - zo,, + i~,,) (23) 

F ~  = - l ~ r F ~ -  a~A~ ( x ~ -  cxo + bx~o- x~s) 
(24) 

+ ~'r v / ~ r ~ / P s r A r  --sgn (ZVrr) F r r Z v r r  

1 
2v,~= rr ( -- z,,,. + h,,~) (25) 

Fr~ = - 13rF~ - a~,.AZ~ (x. + cxo + bx~o- xa~) 
(26) 

+ ~.,- UAT~ ,/P~,.A r --sgn (z,,~,) Fr, z,~, 

ZVrt=~rr  ( - - Z V r t +  i~,) (27) 

3. Hoo Des ign  of  the Linear  Part  

3.1 Preliminaries for H~ controller design 
The scheme of  the proposed controller  can be 

seen from Fig. 3, where 

dl 
d 2 
d3 
d4 
tl I 

w n2 
713 

erl 

G(s) % 
- -  W 

Ufr : F ~  ~ -  

P ( s ) u fl ~ 1 . [ ~ ' ~  

Z3~ 

2 

err 

Iv_zlA ;, 

Fig. 3 The proposed controller 

P(s )  : Plant  (full-car suspension system) 

W ( s )  : Weighting functions 

G(s)  : Augmented system 

K ( s )  : H,o controller  

n~, nz, ns ~ Measurement noises 

Let's define the force errors : 

e l f = F i r - F i r ;  e 1 ~ = F s t - F ~  : 
err=Err- -Far  : C r t = F r t - F ~  ; 

where Fir, Fit, Err, f rz  are actual forces gen- 

erated from the front-right,  front-left,  rear-r ight  

and rear-left hydraul ic  actuators, respectively. 

And Ffr ,  F~ ,  Fg, Fg are those desired forces 

calculated from H~ controller.  

The above errors are considered as the distur- 

bances for the linear system. 

Let us consider that u = [Fir Nil F ~  Frt] r is 

defined as the control input  for the force 

generated at the front-right,  front-left,  rear-r ight  

and rear-left suspensions respectively, then the 

systems (8) - (9)  can be rewritten in the form : 

2 , = A p x ,  + B , u  + Gp[ d l  (28) 

yp= cm'cp (29) 

where d=[zr ,  r 2r,t Zrrr Zrr,] r, e=[e lr  ejz err erz] r 

The considered transfer functions of interest are 

these from disturbance to the heaving acceleratio- 

n, pitching acceleration and roll ing acceleration 

of the car body. 

The state space representation of  the plant  can 

be written in the form:  

2p = A ~ p  + Bpa w + Bpz u (30) 

z p = C m x p + D m ~ w + D m 2 u  (31) 

Y~ = Cmxp + Dp21 w + Pp22 u (32) 

where 

Bpl=[ G 0¢,,×3)], Bp2=Bp, 

G~=G, 

D:~= [Dp~, ; Dp~= : Dp~ ; D~, ; Dp,,~ ; D ~  ; Dp,~,], 

Dp~I= [0¢~×,~ I¢3×3) 0¢~×~], 
Dp== [0~×,~] 
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From Eq. (21), the controlled output zp can be 
partitioned as follows: 

ZP ~ X8XI(XO~N1 Cpn] - G,,,,1 - Cp,~,l 

Cp,,Ixp+ C , . , I w +  C ~ , l  
G,,~ I Cp,,~ I G , , ~  I 
G,,~ I G , , ~  I C~,,~ I 

. Cp,,J _ C,,, , ,J _ C,,,~,J 

u (33) 

Assume that the weighting functions Wt, W~, W~ 
corresponding to the states xa, Xg, xt0 have 
dynamic equations : 

2w,=Aw, + Bwlx~ (34) 

~'1 = C w t X w l  + Dw,x8 (35) 

2w,=Aw,xw, + B~,x~ (36) 

zz = Cw,xw, + Dw,x9 (37) 

2u,~= Aw~xw~ + B~x~o (38) 

~ =  Cw~x~, + Dw~x~o (39) 

The weights W~, Ws, W~, W~ corresponding to the 
active forces u~, uz, us, u~ are scalar values 17174 = 
at, Ws=ote, W~=aa, W~=a~, respectively. 
From Eq. (33), we have: 

x~:  CPllXp'4- D~lll W q-- DPl~l Z~ (40) 

x s :  CPl,Xp ~- D~I12W'~ D~I2, U (41) 

Xlo=Cp,~xp+D,.,w+D~,,~U (42) 

Substituting Eq. (40) into Eqs. (34) and (35), we 
obtain : 

icw, =A~,x~, + Bw, ( C~,,x~ + D~,,, w + D.,., u) 
(43) 

= B~, C.,,x~ + A.,xw, + B.,D.,,, w + B.,D.,., u 

z~=C~'x~'+D~'(C~"x'+D'"'w+D~'"u) (44) 
=Dw, C~,,x~ + C~,xw, + Dw,D~, I I  w+ D~,D~,,, u 

Substituting Eq. (41) into Eqs. (36) and (37), 

~w'=A~zx~'+ Bw'( Cp'*x~-t- D~'lzW + D~"zz¢) (45) 

zz=C*'x~'+D~'(G"x~+D'"'w+D~'"u) (46) 
= Dw, C~,~x~ + C~,x~, + D~,Do,,, w + D~,D~,,, u 

Substituting Eq. (42) into Eqs. (38) and (39), 

2ws=Aw3x~'+Bw~(Cp'~xp+Dp"w+Dp"u) (47) 
= Bw, C,,~x~ + A~x~, + Bw~D~.~ w + B~Dp,. u 

z~=Cw~x~+D~(Cp,~xp+Dp.~w+Dp,.u) (48) 

From Eq. (33), we have 

{ u ~ = C p , , x p + D p . , w + D p , . u  (49) 

{ u2=Cp'~xp+Dp'~w+Dp' '~u  (50) 
25= Of 2U2 

{ u3=Cp'~x~+D''"w+D'' '~u (51) 
~6= 1~3U3 

{ u 4 = C , , , x , + D p . , w + D , , . u  (52) 
ZT: a4~4 

From Eqs. (30), (43), (45) and (47) 

2w, = Bw, Cp. A~, 0 x~, 
x°'/ / o Ao, /x q 
Xw3J ~-Nw~Cp~s 0 0 Aws LXw3J 

(53) 

B~,Dp,,, I B~,Dp,,, 
+ B~,Dp,,,I w+ Bw,Dp,,, u 

From Eqs. (44), (46), (48), (49), (50), (51) and 
(52) 

z~ Dwl Cp,  Cwl 
z2 Dw, Ct,,, 0 
za Dw~Cp,~ 0 
Z4 = at Cp. 0 

a2Cp~5 0 
Ze a3Cp,8 0 
Z7 ot4Cp~ 0 

" Dw,Dp., 
Dw~Dp,,, 

+ alDp~, 
a2Dpu5 
ctaDp.o 
ol4DpHv 

0 0 

Cw, 0 
0 Cw~ xp ] 

o°°o x:: l/ 
0 0 Xw~J 

0 0 
Dw,Dp,,, " 

Dw,D~.,. 
+ alDp,, ,  u 

ol2Dpt26 
a3Dp,,~ 
a4ap~z7 

Eq. (32) can be rewritten as follows: 

xw, + [%×,~ Ic3x3~ %x,~] + [03×,] u y= [ G, 013~11 xw, 

LXwsJ 

Rearranging Eqs. (53)-(55) yields: 

(54) 

(55) 
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2 = A x  + B ~ w + B 2 u  

z = C l x + D u w + D l z u  

y = C z x  + Dz~w+ D2zu 

where x = [ x p  xw~ Xw~ Xw~] r, 

z=[z~ zz z3 z4 zs z6 z7] r, 

y =  [x~ x~ x~o] ~ 

=] B~,G,, A~O 

tBw~C~,~ 0 

D,~,Cp,, C,,., 
D~,C,,, 0 
D~C~,, 0 

CI = alCPl+ 0 
a~Cm 0 
a3Cp,~ 0 
a+Cp, 0 

0(14×3)0 0 0 ] 
A~'2 
0 Aw~ 

0 0 

Cw~ 0 

0 C~ 

0 0 

0 0 

0 0 

0 0 

(56) 

(57) 

(58) 

[+'1 I "l B .B+,Dp,,,. .B~,Dp,,,. +1 +4 
DwtDpu 

[ D.,Dp,~ 
D~,Dm 

Du = mDp,. 
a2D;,,~ 
a3D.%+ 

_ mDp,,, J 

Dw~Dpl, 
D,,,,D.~,, 
Dw,Dp,, 

D~:= mDp,, 

ct2Dp m 
ct3Dp m 

. roD,,,,, 

The augmented system G(s) is fitted to the stan- 

dard form of the H .  control problem. Now we 

will use Hoo theory to find a control ler  K ( s )  
satisfying the above stated control objectives. 

The H= solution involves two Hamil ton matrices 

and 

H = = [ _  A 
C~r C~ 

F A T 
]~ 

L -  B1B(  

7-ZB, B (  - B2BI]  
- A  r J 

r -2 C~ C, - C~ C~] 
I - A  

There exists an admissible controller  such that 

II TzwJL<-r  i n  the following three condi t ions  

ho ld(Doyle  et al., 1989): 

1. H = ~ d o m ( R i c )  and X® : = R i c ( H = )  ~0  
2. JooEdom(Ric)  and Y= ; =Ric (J=)  >0 
3. p(Xoo. Y~) < ~ (p (A )  : spectral radius of 

A = l a r g e s t  eigenvalues of A)  

When these condi t ions  hold, one such controller  

is 

where 

fi_oo=A + ?'-XB~BrX~+ B2F~+ Z~L~C2 
Foo= - B I X ~  
L ~ = - Y ~ C :  
Z~= ( I -  Z -2 Y~X~) -' 

3.2 Hoo formulation and solution 
The Hoo control problem is to find a controller  

K(s )  for the augmented system G(s) such that 

the ~ - n o r m  of  the closed loop transfer function 

Tzw is below a given positive scalar 7 (Doyle et 

al., 1989) : 

F i n d  K( s )  :l[ TzwlL-<r (59) 

For the problem to have a solution,  the following 

condi t ions  must be satisfied(Doyle et al., 1989): 

i . (A,  Bz) is stabilizable, and (Cz, A)  is 

detectable 

i i .  D~2 is full co lumn rank, and Dm is full row 

111. 

iv .  

rank 

A - j w I  
C1 

all w 

A - t i m  
C2 

(2) 

B2 / q has full co lumn rank for 
Ot2 ] 

B l l  has full row rank for all 
Dzi ] 

v .  D u = 0  and Dz2=O 

3.3 Uncertainty description and choosing 
weighting functions 

The change of parameters is assumed as 

tbllows : 

1. the change of sprung mass (car body mass) 

includes passengers and luggage weights:  

Z~ms 
2. when the damping  coefficients are measured, 

these errors are about  ---+ 10% of the given 

values. 

Assume that Ares=500 kg, Absj=+±-lO%bs/ and 

Ab,+s = ± 10%bsr. 

From the small gain theorem, the robustness of  

the c losed- loop system in the presence of uncer- 

tainties is assured if 7 <  1. The change in the 

parameters of the system is taken into account by 

multiplicative uncertainty model and the uncer- 

tainty A(s)  is derived from the nominal  plant  

Pn(s) and the perturbed plant  Pp(s) as follows 

(Shahian and Hassul, 1993): 
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Fig. 4 Multiplicative uncertainty at the plant output 

G(s) - P .  (s) 
A(s)  = (61) 

P.(s) 

The weighting functions are chosen so as to satis- 

fy 

I A(jco)l< W(j~o)l. 'v'~0 (62) 

Our problem can be solved if y satisfying the 

condi t ions  in section 3.2 with the weighting 

functions are chosen so as to satisfy condi t ion 

(62) and 7 < 1 .  

4. Adaptive Nonlinear Design of the 
Actuator Part 

4.1 Preliminaries for adaptive nonlinear 
controller design 

We consider the hydraulic actuator dynamic 

Eqs. (20) and (21). Two parameters are con- 

sidered as unknown  parameters:  a:~=4fle//Vt: 
and l/r:.  The main  reason for choosing a:: as an 

unknown  factor is that the bulk modulus  of  

hydraulic fluid is known to change dramatically 

even when there is a small  leakage between a 

piston and a cylinder. The next parameter is the 

time constant  and is known to affect the control 

performance greatly. 

Equations (20) and (21) can be written in the form 

F fr  = O1 [ alF:r + (12 (XS-- CX9 -- axlo-xn)  
(63) 

+ a3~/P~:A:- sgn (ZV:r) F:rzvjr] 

2vj~ = Oz ( -- zv~+ i/r) (64) 

where 01, 02 are unk n o wn  parameters 

al = --  C , , ,  a2 = - A ~ ,  a3 = Cd~w:~A~i/~i 

Our purpose is to design a controller  such that 

F f r  c a n  track its desired value F~r by using 

adaptive non- l i nea r  control  based on the back-  

stepping method (Krstic et al., 1995)... 

4.2 Adaptive nonlinear control via back- 
stepping method 

The back-stepping method can be stated as 

follows : 

[13 The 1st step: 
Consider  Eq. (64) with virtual control zv:r and 

rewrite it in the form : 

F i r  = O1 [ q~l q- a3~/ P s : A : -  sgn ( zvjr) F:rzv/r] (65) 

where ~ol=ala15+a2(xs-cxg--axio--Xn) (66) 

We define the first error variable 

e l = F : r - F J r  (el=e:r) (67) 

Its first derivative is obtained 

el = 01(Pl-]- 01a3v: Ps,A:-sgn (Zv/r) Fir ZV:r- F]r (68) 

Let 01 be estimated by 01. If the virtual Zv:r 
control is chosen to satisfy OlZvjr = 01al, where 

- c : l e l - O , ~ t  + F~r (69) 

a l -  01a3,/P~:A:-sgn (zv:~) Fir 

then Eq. (68) becomes 

e r r  = - -  CZ, Ct -~- O1 ~1  ( 7 0 )  

where O =  01--01 is the error of  parameter esti- 

mation. 

Next we choose the Lyapunov function as 

1 2 1 ~2 
V, = _~el + 2 ~ - 0 1  ~ 0  (71) 

then " ( / ' l = - c : . e f - ) , ~ O l ( ~ l - ) , : ~ l e ~ )  (72) 

I) '1~0 when we eliminate Ol with the update law: 
.X 
01-- 9":,~ole: (73) 

where 9":, > 0  is the adaptat ion gain. 

[2] The 2nd step: 
We define the second error variable 

e2  ~ ZVyr - -  a l  (74) 

Its first derivative can be given as 

~2= -- OzZv/~ q- Ozi:r-- dgl (75) 

The Lyapunov function is chosen as 
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1 2 1 ~2 Vz----~-e2 + ~ 0 2  ~ 0 (76) 

The  first der iva t ive  of  1/2 is 

V2 =-ci~e~- r-~O2(#2+7~-z(ez+a~)e2) (77) 

The  con t ro l  law iyr  and upda te  law for 02 are 

given as fo l lows :  

--c12ez+O2(ezWctl) + ~ 1  
i 'r= Oz (78) 

02 = -- ~'f~ (ez + a'~) ez (79) 

where  ~5,2>0 is the a d a p t a t i o n  gain, 

Similar ly,  we apply  the above  p rocedure  to the 

pairs  of  Eqs. ( 2 2 ) - ( 2 3 ) ,  ( 2 4 ) - ( 2 5 ) ,  and  ( 2 6 ) -  

(27).  

5. Simulation Results  

The  numer ica l  values used in this  s imula t ion  

are referred to the work  of  Park  and  Kim (1998) 

and Al leyne  and  Hedr ick  (1995),  and  are given in 

Tab le  1 and  Tab le  2. 

Table 1 Numerical values of full-car model for 
simulation 

Parameters Values Units 

sprung mass ms 1460 kg 

front unsprung mass m l  40 kg 

rear unsprung mass Y¢/r 

front damping coefficient b~, 

rear damping coefficient k% 
front spring coefficient ks~ 

rear spring coefficient ks~ 

tire stiffness coefficient kt 
rolling moment of inertia of L 
the car-body 

pitching moment of inertia 
L of the car-body 

distance between the center 
of gravity of car-body and a 
front axle 

distance between the center 
of gravity of car-body and b 
rear axle 

half of width of car-body c 

460 

2460 

1.011 

1.803 

L 

0.755 

35.5 

1290 

1620 

19960 

17500 

175500 

kg 

N .s /m 

N . s / m  

N / m  

N / m  

N / m  

k g • m 2 

k g • m z 

m 

m 

m 

The  weight ing  funct ions  and  the value  of  7 are 

chosen  as 

W~ = 15s+0.1 . [~  18s+0.1 W.,- 22s+0.1 . 
458+150 ' 159s+1350 ' 3 - - 6 7 ~ 1 ~  

W4=3.5 × l0 -8 '  W5--3.5 × l0 -~" W6=4.3 × 10 - s '  

WT=4.3x l0 -3 ' ~=0.9986 

The  gains of  adap t ive  cont ro l le rs  are chosen  as 

? ' r l = ? ' f ~ = 1 0 6  ; c s , = 6 5 0 0  ; c l z = 1 0  ; 

Z r l = ~ r ~  = 1 0  6 ; Cr1=7000 ; Cr2=5 

The  input  d i s tu rbances  at the rear  wheels Zrrr and 

Z~r,(t) are relat ively identical  to the input  dis- 

tu rbances  at the front  wheels Zr,r(t) and Z r , , ( t ) ,  

except for a t ime delay. 

Zr,r(t) =Asrs in(c0 t )  : zr,,(t) =A~r s i n [ c o ( t + r ) ]  ; 

Zri,(t)=Aj, sin(cot) : Zrr,(t)=Ar, sin[w(t+r) ]. 

where 

co : d i s tu rbance  frequency. 

Air, Aj~, Arr, Art : d i s tu rbances  ampl i tudes  at 

the f ron t - r igh t ,  f ront- lef t ,  r e a r - r i gh t  and rea r -  

left wheels respectively. 

a+b 
r : t ime delay, r =  with is the car ' s  velo- 

/3 
city. 

5.1 F r e q u e n c y  d o m a i n  

The  plots of  uncer ta in t ies  and  weight ing  func- 

t ions  are given in Figs. 5, 6 and  7. Figs. 8 -10  

show the gain plots  o f  the t ransfer  funct ions  f rom 

d i s tu rbance  to the heaving,  p i tch ing  and  ro l l ing  

accelera t ions  of  the c a r - b o d y  in three  cases : pas- 

Table 2 Numerical values of hydraulic actuators for 
simulation 

Parameters Values Units 

al, 4.515e13 N / m  ~ 

¢~ l.OO 
7/ 1.545e9 N/(mSl2kg 112) 

A j  3.35e-4 m z 

Ps~ 10342500 N / m  2 

aF~ 5.145e13 N / m  5 

/~r 1.00 

7r 1.835e9 N/(mSl2kg 1/2) 

A r  2.85e-4 m 2 

Psr 9545000 N/m z 
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Fig. 8 Gain plot of  heaving acceleration of the 
car-body 

5 0  

"~ 1 0  , , ,  - . . . . .  passive system 

",D 0 [ / . / "  . . . . . .  active system with desired input 
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Gain plot of pitching acceleration of the 
car body 

Fig. 9 
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Fig. 10 Gain plot of rolling acceleration of the 
car-body 

sive system, active system with desired input and 

active system with actual input. 

A human is very sensitive to the vertical vi- 

brations that occur over the frequency range of  

I-2 Hz, to the pitch vibrations over the range of  

1.3-2.5 Hz, and to the roll vibrations over the 

range of  1.5-2 Hz, and less sensitive to the fre- 

quencies outside these ranges (Gil lespie,  1992). 

In Fig. 8, although the heaving acceleration is 
somewhat  higher in the active case than in the 

passive case be low 0.5 Hz, but the active suspen- 

sion improves at 0.5-2 Hz. which is the sensitive 

frequency region of  a human in heaving vibra- 

tion. Also,  we can see in Fig. 9 and Fig. 10, the 

active system greatly improves the pitching and 

rolling accelerations at the sensitive frequency 
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regions of  a human. 

The above figures show that adaptive nonlinear 

control could cape with the nonlinearity of  the hy- 

draulic actuator, and the frequency properties set 

by H~ design are kept well. 

5.2 Time domain 

The responses o f  the system with step disturb- 

ance are shown in Figs. 11-13. Figures 14-16 

show the responses o f  the system with sine wave 

disturbance. 

We can see that the active system has good 

performances. The heaving, pitching and rolling 

accelerations of  the car body are reduced. The 

designed nonlinear adaptive controller can keep 

good performance of  the H~ controller. 

S 
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3 

2 

1 

-2 
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b 
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0 
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Figures 17 and 18 show the estimation errors t~l 

and Oz, respectively. The errors between estimated 

values and actual values are very small. 

6. C o n c l u s i o n s  

This paper presents hybrid control of an active 

suspension system with full-car model by using 

H~ and nonlinear adaptive control methods. H= 

controller achieved robustness in the presence of 

parameter uncertainties and minimized the effects 

of disturbance. The system parameter variations 

are taken into account by muhiplicative uncer- 

tainty model and system robustness is guaranteed 

by small gain theorem. Simulation results show 

that the proposed controller yields better per- 

formance in the heaving, pitching and rolling 

accelerations of the car-body than the passive 

system in both time and frequency domains. And 

the designed nonlinear adaptive controller for 

hydraulic actuators can keep good performance of 

the H= controller. 

From the above results, the H~ controller can 

be used usefully to control an active suspension 

system because it meets two requirements: 

(1) good performance: small gains from road 

disturbance to the heaving, pitching and rolling 

accelerations of the car-body. 

(2) robustness property which is guaranteed 

from small gain theorem. 

It is expected that the active suspension system 

with the proposed controller can be applied to 

car industry so that the car's quality could be 

improved. 

3 0 ,  i 

26 

22 

~ 2o 
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0 0!2 0'4 

Fig. 18 

o'.~ o!~ ~.'o ~!~ 
Time (~') 

Estimation error t~z 

L 

1.4 1.6 

R e f e r e n c e s  

Andrew Alleyne and J. Karl Hedrick, 1995, 

"'Nonlinear Adaptive Control of Active Sus- 

pensions," 1EEE Transaction on Control Systems 

Technology, Vol. 3, No. I, pp. 94--101. 

Bahram Shahian and Michael Hassul, 1993, 

Control System Design Using Matlab, Prentice- 

Hall International, Inc. 

Doyle, J. C., Glover, K. , Khargonekar, P. and 

Francis, B., 1989, "State-Space Solutions to Stan- 

dard Hz and H= Control Problem/'  IEEE Trans- 

action on Automatic Control, Vol. 34, No. 8, 

pp. 831 -- 847. 

Herbert E., 1967, Merritt, Hydraulic Control 

Systems, John Wiley & Sons. Inc. 

Jong H. Park and Young S. Kim, 1998, "Dec- 

entralized Variable Structure Control for Active 

Suspensions Based on a Ful l -Car  Model," Pro- 

ceeding o f  the 1998 IEEE, International Confer- 

ence on Control Applications, pp. 383-- 387, Italy. 

Jung-Shan I_in and loannis Kanellakopoulos, 

1997, "Nonlinear Design of Active Suspensions," 

IEEE Control Systems Magazine, Vol. 17, No. 3, 

pp. 45 -- 59. 

Katsuhisa Furuta, Akira Sano and Derek 

Atherton, 1988, State Variable Methods in Au- 

tomatic Control, John Wiley & Sons, Inc. 

Kemin Zhon and John C. Doyle, 1998, Essen- 

tials o f  Robust Control, Prentice-Hall Interna- 

tional, Inc. 

Krstic, M., Kanellakopoulos, 1., and Kokotovic. 

P., 1995, Nonlinear and Adaptive Control Design, 

John Wiley & Sons, Inc. 



1626 Trong Hieu BuL Jin Ho Suh, Sang Bong Kim and Tan Tien Nguyen 

Nguyen, T.T. 1998, "Control of Active Sus- 
pension System by Using Ho, Theory," MS. The- 

sis, PKNU, Korea. 

Nguyen, T.T., Nguyen, V.G. and Kim, S. B., 
2000, "Control of Active Suspension System by 
Using H~ Theory," I C A S E  Transaction on Con- 

trol Automation and System Engineering, Vol. 2, 
No. 1, pp. 1--6. 

Takanori Fukao, Arika Yamawaki and Nori- 
hiko Adachi, 1999, "Nonlinear and H= Control 
of Active Suspension Systems with Hydraulic 

Actuators," Proceeding o f  the 38 th Conference on 

Decision and Control, pp. 5125-- 5128, Phoenix. 
Thomas D. Gillespie, 1992, Fundamentals o f  

Vehicle Dynamics, Society of Automotive Engi- 
neers, Inc. 

Yong Ha Jung, Jae Weon Choi and Young 
Bong Seo, 2000, "Overlapping Decentralized EA 
Control Design for an Active Suspension System 

of a Full Car Model," Proceeding o f  the S ICE 
2000, pp. 85--90, lizuka. 


